
Single Discrete IGBT 65 Amperes / 4500 Volts

Outline Drawing and Circuit Diagram

Dimensions	Inches	Millimeters
А	2.11	53.6
В	0.98	25.0
С	2.01	51.0
D	0.2	5.0
E.	0.1	2.5
F	0.27	6.9
G	0.49	12.5
Н	0.46 Max.	11.8 Max.

Dimensions	Inches	Millimeters
J	0.14	3.6
K	0.22	5.7
L	0.43	10.8
М	0.04	1.0
N	0.43	10.9
Р	0.02	0.5
Q	0.21 Dia.	5.3 Dia.

Description:

Powerex Single Non-isolated Discrete is designed specially for customer high voltage switching and pulse power applications.

Features:

- ☐ Low Drive Requirement
- ☐ Low V_{CE(sat)}
- ☐ Non-Isolated Molybdenum Mounting Plate
- ☐ IGBT is designed to be used by being immersed in oil or conformal coated in assembly
- ☐ Advanced Mitsubishi R-Series Chip Technology

QIS4506012 Single Discrete IGBT 65 Amperes / 4500 Volts

Maximum Ratings, T_i = 25 °C unless otherwise specified

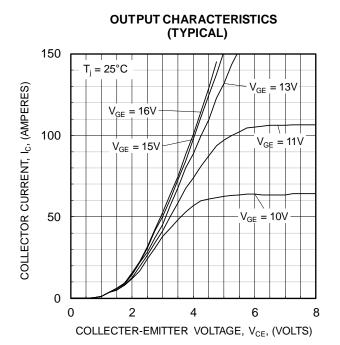
Ratings	Symbol	QIS4506012	Units
Collector Emitter Voltage	V _{CES}	4500	Volts
Gate Emitter Voltage	V _{GES}	±20	Volts
Collector Current (DC, T _C = 127°C)	Ic	65	Amperes
Peak Collector Current (Pulsed)	Ісм	130	Amperes
Junction Temperature	T _i	-55 to 150	°C
Storage Temperature	T _{stg}	-55 to 125	°C
Mounting Torque, M5 Mounting Screws	_	30	in-lb
Weight (Typical)	_	20	Grams

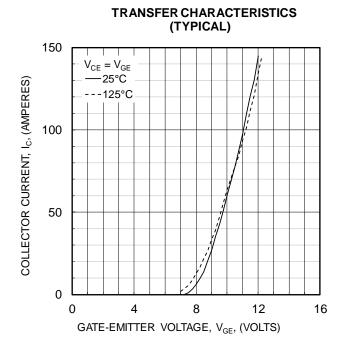
Static Electrical Characteristics, T_j = 25 °C unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Collector Cutoff Current	I _{CES}	$V_{CE} = V_{CES}, V_{GE} = 0V$	_	_	1.0	mA
Gate Leakage Current	I _{GES}	$V_{GE} = V_{GES}$, $V_{CE} = 0V$	_	_	0.5	μΑ
Gate-Emitter Threshold Voltage	V _{GE(th)}	$I_C = 7mA$, $V_{CE} = 10V$	5.8	6.3	6.8	Volts
Collector-Emitter Saturation Voltage	V _{CE(sat)}	$I_C = 65A$, $V_{GE} = 15V$, $T_j = 25$ °C	_	3.5	_	Volts
		$I_C = 65A, V_{GE} = 15V, T_j = 125$ °C	_	4.4	5.1	Volts
Total Gate Charge	Q _G	V _{CC} = 2800V, I _C = 65A, V _{GE} = 15V	_	750	_	nC

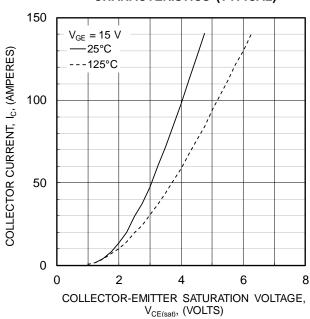
Dynamic Electrical Characteristics, $T_j = 25$ °C unless otherwise specified

Characteristics		Symbol	Test Conditions	Min.	Тур.	Max.	Units
Input Capacitanc	е	C _{ies}			9.7	_	nF
Output Capacitar	nce	C _{oes}	$V_{GE} = 0V$, $V_{CE} = 10V$	_	0.61	_	nF
Reverse Transfer	Capacitance	C _{res}		_	0.28	_	nF
Resistive	Turn-on Delay Time	t _{d(on)}	T _j = 125°C,		0.95	1.5	μs
Load	Rise Time	t _r	$V_{CC} = 2800V, I_{C} = 65A,$		0.30	0.50	μs
Switching	Turn-off Delay Time	t _{d(off)}	$V_{GE1} = V_{GE2} = 15V, L_S = 150nH,$		3.8	5.0	μs
Times	Fall Time	t _f	$R_{G(on)} = 48.6\Omega, R_{G(off)} = 180\Omega$	_	0.45	1.0	μs
Turn-on Switching	g Energy	E _{on}	$T_j = 125$ °C, $I_C = 65A$, $V_{CC} = 2800V$,	_	275	_	mJ/P
Turn-off switching	g Energy	E _{off}	$V_{GE} = \pm 15V$, $L_{S} = 150$ nH $R_{G(on)} = 48.6\Omega$, $R_{G(off)} = 180\Omega$		220	_	mJ/P

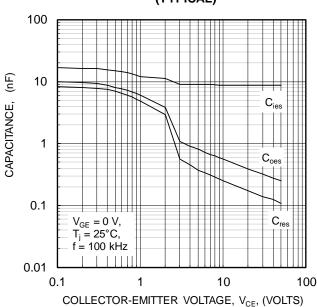

Thermal and Mechanical Characteristics, T_j = 25 °C unless otherwise specified


Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Thermal Resistance, Junction to Case	R _{th(j-c)}	IGBT	_	0.10	0.11	°C/W
Thermal Resistance, Case to Sink	R _{th(c-s)}	$\lambda_{grease} = 1W/mK$	_	0.10	_	°C/W
Thermal Grease Applied						

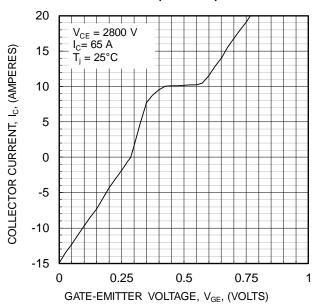
^{*} Pulse width and repetition rate should be such that device junction temperature (Tj) does not exceed device rating.
**Pulse width and repetition rate should be such that device junction temperature rise is negligible.

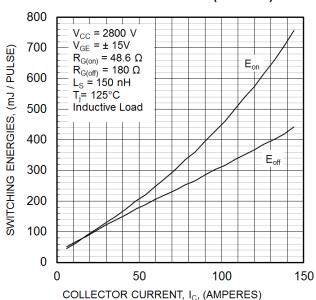


QIS4506012 Single Discrete IGBT 65 Amperes / 4500 Volts

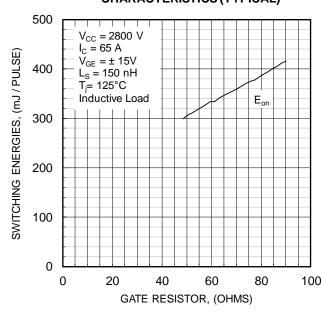


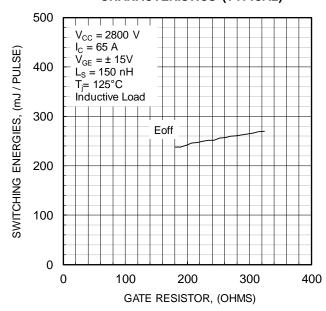
COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL)


CAPACITANCE CHARACTERISTICS (TYPICAL)

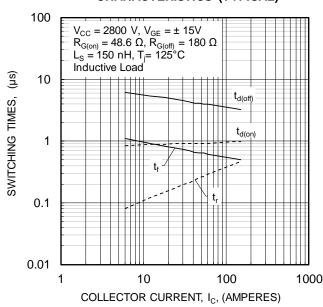


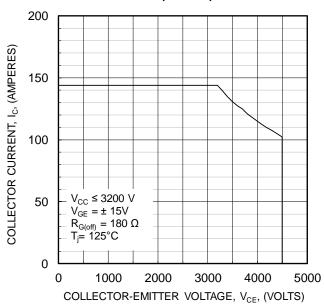
QIS4506012 Single Discrete IGBT 65 Amperes / 4500 Volts


GATE CHARGE CHARACTERISTICS (TYPICAL)

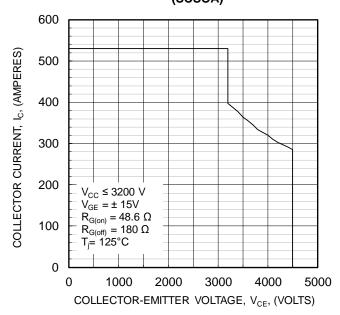

HALF-BRIDGE SWITCHING ENERGY CHARACTERISTICS (TYPICAL)

HALF-BRIDGE SWITCHING ENERGY CHARACTERISTICS (TYPICAL)

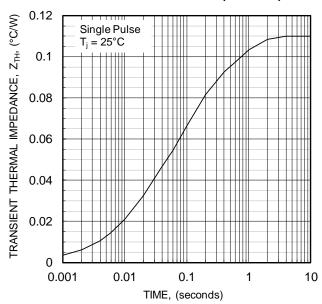

HALF-BRIDGE SWITCHING ENERGY CHARACTERISTICS (TYPICAL)



QIS4506012 Single Discrete IGBT 65 Amperes / 4500 Volts


HALF-BRIDGE SWITCHING TIME CHARACTERISTICS (TYPICAL)

REVERSE BIAS SAFE OPERATING AREA (RBSOA)


SHORT CIRCUIT SAFE OPERATING AREA (SCSOA)

QIS4506012 Single Discrete IGBT 65 Amperes / 4500 Volts

TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (TYPICAL)

$$Z_{th(j-c)}(t) = \sum_{i=1}^{n} R_{i} \left\{ 1 - \exp^{\left(\frac{-t}{\tau_{i}}\right)} \right\}$$

	1	2	3	4
R_i	3.80E-04	1.29E-03	2.21E-02	8.39E-02
τ_i	3.33E-04	2.59E-03	1.15E-02	1.38E-01